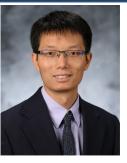


High-Dimensional Uncertainty Quantification via Active and Rank-Adaptive Tensor Regression

Zichang He Department of Electrical & Computer Engineering University of California, Santa Barbara, CA E-mail: zichanghe@ucsb.edu

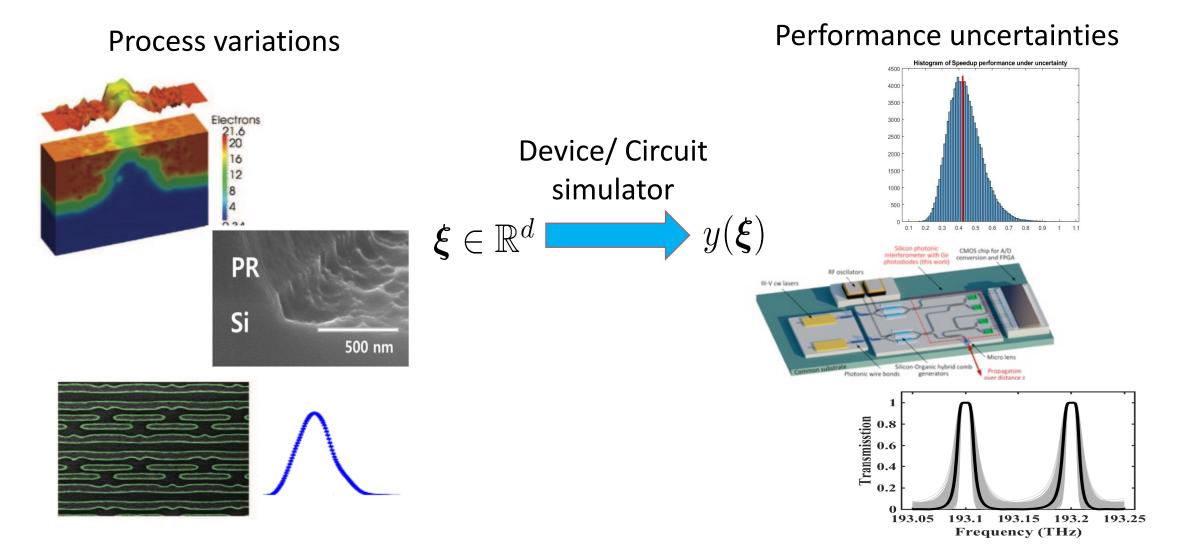
Zichang He



Zheng Zhang

IEEE EPEPS, 2020

Motivation: Uncertainty quantification



Detailed simulations are usually expensive!

Stochastic spectral methods

Given process variation random parameters

$$\boldsymbol{\xi} = [\xi_1, \dots, \xi_d]$$

We want to find a surrogate model such that^[1]

$$y(\boldsymbol{\xi}) \approx \sum_{j=1}^{N} X_i B_i(\boldsymbol{\xi})$$

• $B(\boldsymbol{\xi})$ is a predefined orthogonal and normalized polynomial basis.

 $B_i(\boldsymbol{\xi})$

- *X* is the unknown coefficient.
- In practical, we need to truncate B(ξ), e.g. bounded by a certain polynomial order.

To construct an accurate surrogate with fewer samples.

Challenges in surrogate modeling

1. Curse of dimensionality:

Exponential complexity of needed samples

• Stochastic collocation: $O(p+1)^d$

• Regression:
$$O\binom{p+d}{d} \approx O(d^p)$$

2. Sampling method

Compressive sensing (Li et al.), Hyperbolic regression (Roy et al.), ANOVA (Zhang et al.)

...

Don't have a golden-thumb for sampling

Our solution:

- ✓ Reduce # of variables to linear complexity O(dr(p + 1))
- An exploration-exploitation balanced sampling method

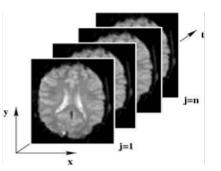
Tensor background

• matrix: 2-D data array

$$\mathbf{A} = [a_{i_1 i_2}] \in \mathbb{R}^{n_1 \times n_2}$$

• 3-D tensor

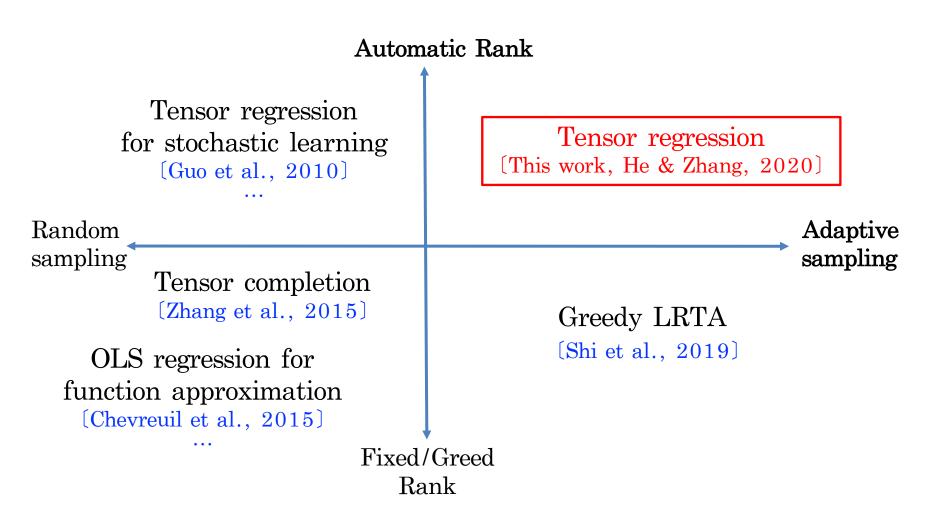
$$\boldsymbol{\mathcal{A}} = [a_{i_1i_2i_3}] \in \mathbb{R}^{n_1 \times n_2 \times n_3}$$



• General case: d-dimensional tensor

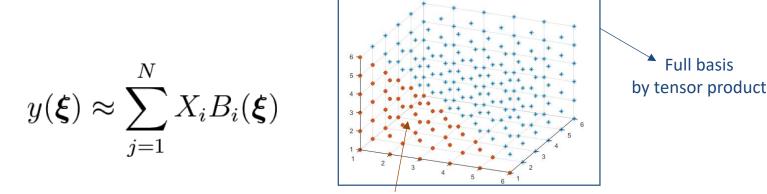
$$\boldsymbol{\mathcal{A}} = [a_{i_1} \cdots i_d] \in \mathbb{R}^{n_1 \times \cdots \times n_d}$$

Existing works



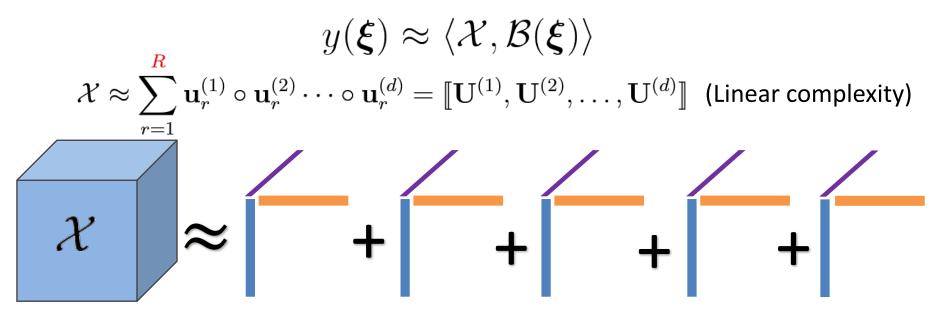
Some existing works in electronic design automation A predefined tensor rank is usually unknown to the user

Low-rank approximation to coefficients

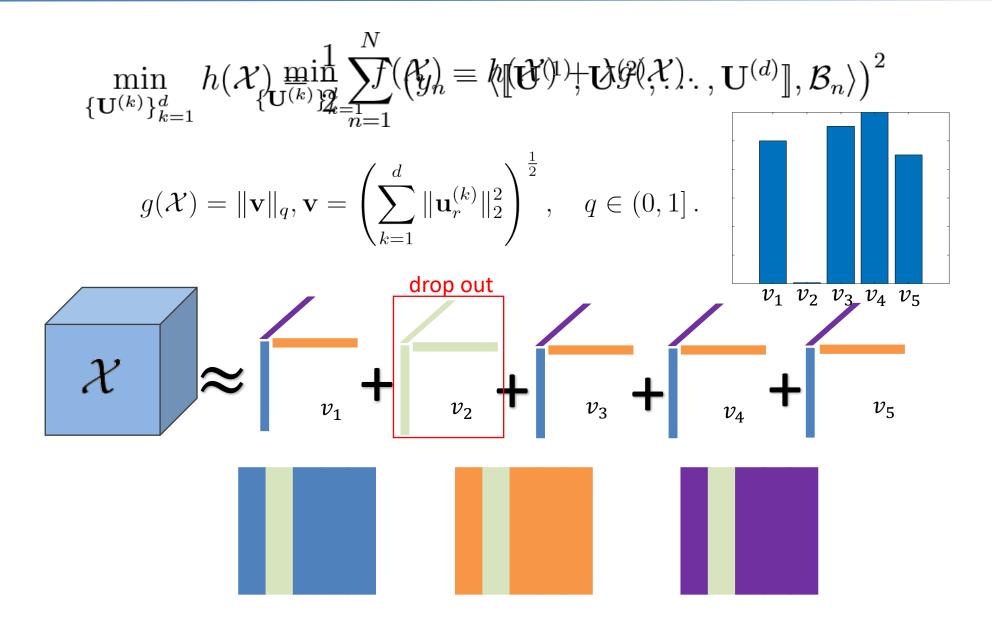


Total degree truncation in gPC

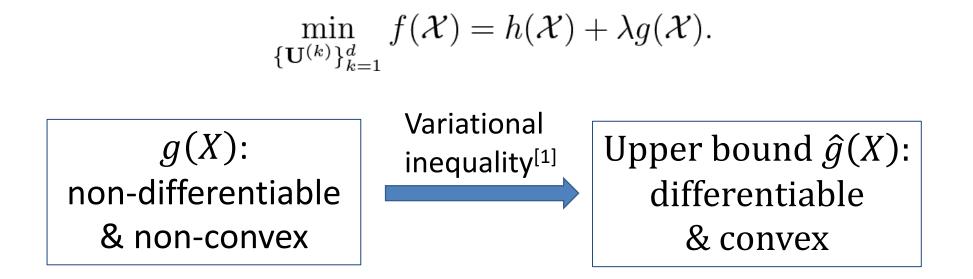
Ours: Full basis tensor $\mathcal{B}(\boldsymbol{\xi})$ + low-rank coefficient tensor \mathcal{X} .



Contribution 1: Group-sparsity regularizer

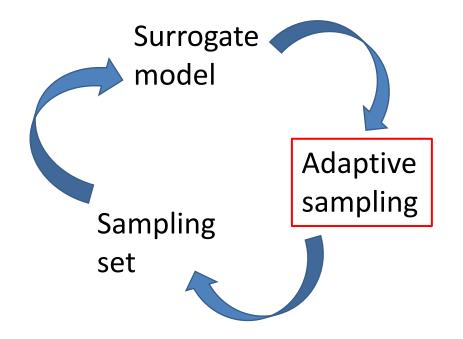


Solver to regression



Then f(X) can be solved by alternating algorithms efficiently

Contribution 2: Adaptive sampling method

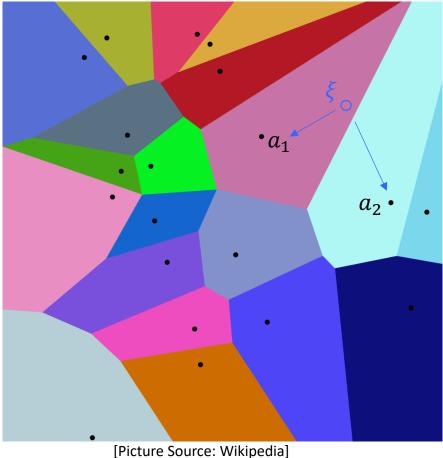


Balance between Exploration & Exploitation

- Samples should spread over the sampling space.
- More samples should focus on the critical regions.

Adaptive sampling: Exploration

Step 1: Estimate and select a Voronoi cell



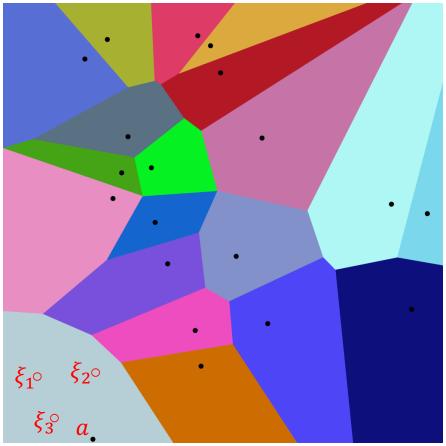
[Picture Source: Wikipedia] Voronoi diagram Voronoi cell $C(a_i)$ covers the region that are closest to a_i .

The volume of a cell can estimate the sampling density.

The diagram can be estimated by Monte Carlo samples.

Adaptive sampling: Exploitation

Step 2: Select a sample from one Voronoi cell

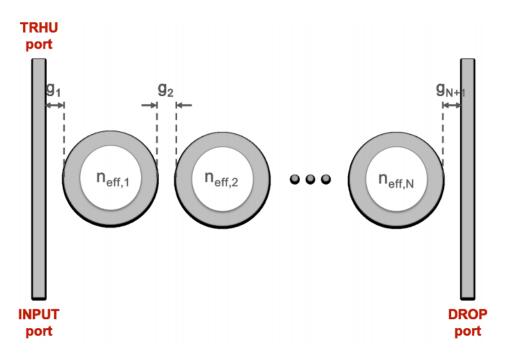


[Picture Source: Wikipedia]

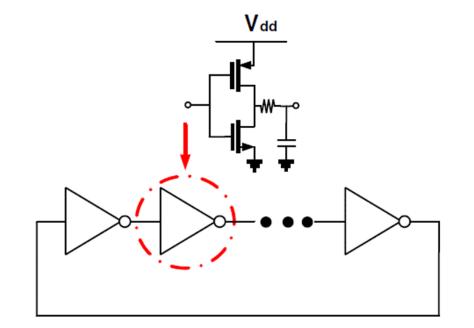
Nonlinearity measure γ $\gamma(\boldsymbol{\xi}) = |\hat{y}(\boldsymbol{\xi}) - \hat{y}(\mathbf{a}) - \nabla \hat{y}(\mathbf{a})^T (\boldsymbol{\xi} - \mathbf{a})|$

The selected sample will be the most nonlinear one in a least-sampled region

Numerical Experiments

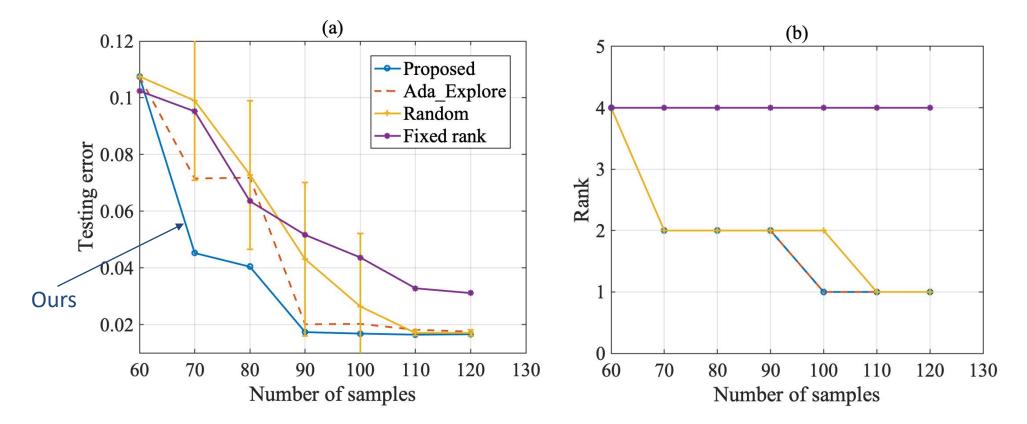


Photonic band-pass filter (19 random parameters)



CMOS ring oscillator (57 random parameters)

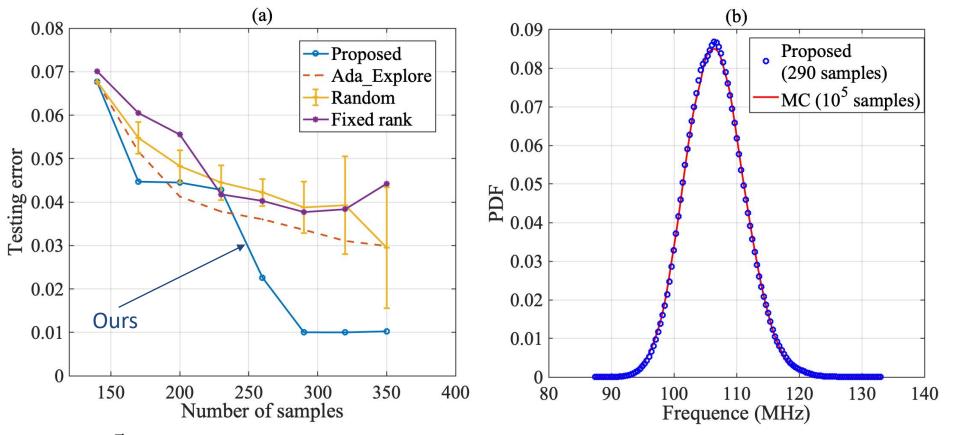
Photonic band-pass filter



 10^5 MC simulations approximated by ~100 samples in tensor model (~ 10^3 x speedup)

Approximation results will be satisfied if the rank is well estimated.

CMOS ring oscillator



 10^5 MC simulations approximated by ~300 samples in tensor model (~350x speedup)

Proposed adaptive sampling is effective.

Experiment: CMOS ring oscillator

Compare with a standard gPC expansion of a total degree scheme: fewer samples & better accuracy

	Proposed	Total-degree gPC	MC
# of variables	855	1711	N/A
# of samples	290	1711	10 ⁵
Mean	106.28	106.58	106.53
Deviation	4.616	6.81	4.641
Error	1%	4.84%	N/A

A tensor regression model for high-dimensional UQ

Two technical contributions:

- Automatic rank determination via group sparsity regularization
- Adaptive sampling via Voronoi diagram

Validation on a photonics filter and a CMOS ring oscillator (up to 1000x speedup)