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Motivation: Uncertainty quantification
Process variations Performance uncertainties

Detailed simulations are usually expensive! 

Device/ Circuit 
simulator
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Stochastic spectral methods
Given process variation random parameters

We want to find a surrogate model such that[1]

• is a predefined orthogonal and normalized 
polynomial basis.

• X is the unknown coefficient.
• In practical, we need to truncate       , e.g. bounded by a 

certain polynomial order.

⇠ = [⇠1, . . . , ⇠d]

To construct an accurate surrogate with fewer samples.
[1] Xiu, Dongbin. Numerical methods for stochastic computations: a spectral method approach. Princeton university press, 2010.
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1. Curse of dimensionality: 
Exponential complexity of needed samples
• Stochastic collocation: 𝑂 𝑝 + 1 !

• Regression: 𝑂 𝑝 + 𝑑
𝑑

≈ 𝑂 𝑑"

2. Sampling method 
Don’t have a golden-thumb for sampling

Challenges in surrogate modeling

Our solution: 
ü Reduce # of variables to linear complexity 𝑂 𝑑𝑟(𝑝 + 1)
ü An exploration-exploitation balanced sampling method

Compressive sensing (Li et al.), 
Hyperbolic regression (Roy et al.), 
ANOVA (Zhang et al.)
…
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Tensor background
• matrix: 2-D data array

• 3-D tensor

• General case: d-dimensional tensor
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Existing works

Fixed/Greed	
Rank

Adaptive	
sampling

Tensor	regression
[This	work,	He & Zhang, 2020]

Tensor	completion
[Zhang et al., 2015]

Tensor	regression	
for	stochastic	learning
[Guo et al., 2010]

…

Greedy	LRTA
[Shi et al., 2019]

Automatic	Rank

Random	
sampling

Some existing works in electronic design automation
A predefined tensor rank is usually unknown to the user

OLS	regression	for	
function	approximation	
[Chevreuil et al., 2015]

…
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Low-rank approximation to coefficients

(Linear complexity)

Ours: Full basis tensor         + low-rank coefficient tensor    . 

++≈ + +

Total degree truncation in gPC

Full basis 
by tensor product
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Contribution 1: Group-sparsity regularizer

𝑣! 𝑣" 𝑣# 𝑣$ 𝑣%

++≈ + +

drop out

𝑣%𝑣" 𝑣# 𝑣$𝑣!
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Solver to regression

𝑔 𝑋 :
non-differentiable 

& non-convex

Then 𝑓 𝑋 can be solved by alternating algorithms efficiently 

[1] Jenatton et al. “Structured sparse principal component analysis”, in Proc. Artif. Intell. Statist., 2010

Upper	bound	 7𝑔 𝑋 :
differentiable
&	convex

Variational 
inequality[1]
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Balance between Exploration & Exploitation
• Samples should spread over the sampling space.
• More samples should focus on the critical regions.

Contribution 2: Adaptive sampling method

Sampling 
set

Surrogate 
model

Adaptive 
sampling
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Voronoi diagram

Adaptive sampling: Exploration

[Picture Source: Wikipedia]

Voronoi cell 𝐶(𝑎") covers the region that 
are closest to 𝑎". 

The volume of a cell can estimate the 
sampling density. 

The diagram can be estimated by Monte 
Carlo samples.

Step 1: Estimate and select a Voronoi cell 

𝑎!

𝑎"

o𝜉
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The selected sample will be the most 
nonlinear one in a least-sampled region

Adaptive sampling: Exploitation
Step 2: Select a sample from one Voronoi cell

Nonlinearity	measure	𝛾

[Picture Source: Wikipedia]
𝑎

𝜉! 𝜉"

𝜉#

o

o

o



13

Numerical Experiments

Photonic band-pass filter 
(19 random parameters) 

CMOS ring oscillator
(57 random parameters) 
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Photonic band-pass filter 

10% MC simulations approximated by ~100 samples in tensor model
(~10&x speedup)

Approximation results will be satisfied if the rank is well estimated. 

Ours
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CMOS ring oscillator 

10% MC simulations approximated by ~300 samples in tensor model
(~350x speedup)

Proposed adaptive sampling is effective. 

Ours
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Experiment: CMOS ring oscillator 

Compare with a standard gPC expansion of a total degree 
scheme: fewer samples & better accuracy

Proposed Total-degree gPC MC

# of variables 855 1711 N/A

# of samples 290 1711 10%

Mean 106.28 106.58 106.53

Deviation 4.616 6.81 4.641

Error 1% 4.84% N/A
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Take-home message

A tensor regression model for high-dimensional UQ

Two technical contributions:
• Automatic rank determination via group sparsity 

regularization
• Adaptive sampling via Voronoi diagram

Validation on a photonics filter and a CMOS ring oscillator 
(up to 1000x speedup)


